Beyond GRETINA: Where to go with tracking? Simulations?

Simulations (from Lew)

- **Addback & Tracking**
 - Determine packing resolution empirically (hit multiplicity)?
 - How to handle coincidences with background events?

- **Efficiencies**
 - > 2.5 MeV?
 - Segment efficiencies
 - Variation among crystal types, individual crystals?
 - Dead layers (pencil-beam measurements)

- **Reactions**
 - Additional reaction models
 - Nuclear alignment (i.e. input alignment tensor) -> ‘real’ γ-ray angular distributions
 - Polarimetry
 - ‘Real’ backgrounds

- **Dead material (low-energy backscattering)**
 - GRETA mounting shell, beam pipe, chambers
 - Auxiliary detectors, targets, chambers

Tracking

FYI – defining ‘better’ as improved P/T vs. efficiency

- Pair production – none of the codes include this fully (dominates over ~9MeV)
 - May be a good problem to attempt machine learning

- Exploring other figure of merits (FOM) – have as an option in the tracking code which to use
 - Examples from AGATA codes, D. Weisshaar (based on cos(theta))
 - Compound FOM? Average, weighted average, or compare multiple values? Supervisory logic?
 - FOM with weighting (how to formulate?) according to energy depositions under the assumption that larger depositions have less position uncertainty
 - Sensitivity study to explore which FOM is appropriate in different scenarios?

- Explore spectrum properties with different FOM cuts for different interaction point #

- Explore TANGO tracking to (possibly) recover events with two interaction points, but not full energy
 - How to evaluate when this is applicable? Uncertainty in energy?

- Penalty for unphysical range of scattering (i.e. beyond attenuation lengths?)
 - Couple with simulation in some way for probabilistic analysis with not just HPGe, but surrounding materials

- Can tracking be made robust against signal decomposition (position) errors?
 - Throw away low energy interactions for poor FOM events?
 - Make even more specific by throwing away low energy near segment boundaries

- If given multiple signal decomposition results, can tracking effectively pick which is ‘best’?

- Including fully the Compton profile – most important for low energy scatters

- Implement penalty based on Klein-Nishina (scattering cross-sections/probabilities as a function of energy and angle)? i.e. scattering angles that aren’t probable

- Long-range scatterings? How to go beyond the clustering cone, or capture events that don’t stay in the cone (small # of events)